
Maximum Gain Round Trips with Cost
Constraints

Franz Graf, Hans-Peter Kriegel, Matthias Schubert

Institute for Informatics, Ludwig-Maximilians-Universität München, Oettingenstr. 67,
D-80538 Munich, Germany

{graf,kriegel,schubert,}@dbs.ifi.lmu.de

Abstract. Searching for optimal ways in a network is an important
task in multiple application areas such as social networks, co-citation
graphs or road networks. In the majority of applications, each edge in a
network is associated with a certain cost and an optimal way minimizes
the cost while fulfilling a certain property, e.g connecting a start and a
destination node. In this paper, we want to extend pure cost networks
to so-called cost-gain networks. In this type of network, each edge is
additionally associated with a certain gain. Thus, a way having a certain
cost additionally provides a certain gain. In the following, we will discuss
the problem of finding ways providing maximal gain while costing less
than a certain budget. An application for this type of problem is the
round trip problem of a traveler: Given a certain amount of time, which
is the best round trip traversing the most scenic landscape or visiting the
most important sights? In the following, we distinguish two cases of the
problem. The first does not control any redundant edges and the second
allows a more sophisticated handling of edges occurring more than once.
To answer the maximum round trip queries on a given graph data set, we
propose unidirectional and bidirectional search algorithms. Both types of
algorithms are tested for the use case named above on real world spatial
networks.

1 Introduction

Searching for optimal ways in networks is an important task in many application
areas. In most cases, an optimal way is a way minimizing the cost while fulfilling
a certain property. The cost is usually connected to traversing the edges being
part of the way. For example, in road networks the cost of each edge might be
considered as the time it takes to traverse the edge. Finding the fastest route
between two nodes can now be defined as finding the route with the property to
connect both points and additionally having a minimum cost. In social network
analysis, the cost is often measured in hops and the shortest path between two
members in the network is considered as a measure for the strength of their
relationship. Other application areas for networks might be co-citation networks
and protein interaction networks where shortest paths can be used to express
similarity. In all of these domains it is expected that traversing a certain edge is
connected to a certain cost.

ar
X

iv
:1

10
5.

08
30

v1
 [

cs
.S

I]
 4

 M
ay

 2
01

1

In this paper, we like to extend this view by additionally connecting the
traversal of an edge to a certain amount of gain. In our running example, we
consider a traveler who wants to take a hike in a nature resort. Usually, the
traveler wants to see as much of the landscape as possible. Thus, walking on a
scenic trail with a good view and passing by important landmarks represents
some gain. However, our traveler can usually only walk for a certain period of
time until (s)he wants to be back to the starting point, e.g. the parking lot. Thus,
the task is to maximize the gain of our traveler while not spending more than
a certain amount of time. Another application for the proposed query type is a
car announcing a blood donation event at the local hospital. The hospital has
hired the car with the speaker for a limited period of time only and now wants
to find a route reaching as many people willing to donate blood as possible. Let
us note that the problem can be easily extended to searching a way ending at
a different destination than the starting point. Though we will mainly focus on
the case of round trips, the proposed query processing can be easily extended to
the more general case.

A round trip in our definition is a way and thus, it is allowed to pass by the
nodes and edges more than once. Thus, it is different from finding Euler or Hamil-
ton paths in a graph. An important issue about our problem definition is the
possibility to traverse the same edge for an arbitrary amount of times. Depend-
ing on the given task, this might lead to round trips having a large redundancy
in the number of visited edges. Therefore, we distinguish our problem further
into two sub problems: The first allows edges to be visited several times and thus
simply maximizes the gain while keeping the cost below the given threshold τ .
In the second setting, the definition of round trips is extended by allowing that
each edge in the round trip is visited at most k times. Furthermore, each edge
is considered only once when calculating the gain without consideration of any
additional traversal.

To solve both problems, we will introduce algorithms that determine a maxi-
mum gain round trip for all cost budgets being smaller than a certain threshold τ .
To tackle this computationally complex task for practically relevant cost thresh-
olds, we will introduce pruning mechanisms and bidirectional search methods.
The proposed algorithms are evaluated by searching round trips on real world
map data, obtained from OpenStreetMap.

The rest of the paper is organized as follows. Section 2 reviews related work.
In section 3, we define preliminaries and our new queries. Section 4 and section 5
introduce pruning methods and search algorithms. Section 6 evaluates our algo-
rithms on real world data w.r.t. runtime and various parameter settings. Finally,
section 7 summarizes the paper and outlines directions for future research.

2 Related Work

Common route search which starts from a single source node to at least one
target node is also known as the single-source problem. This problem has been
studied very extensively for a long time [1,2,3,4,5,6,7,9,11,15,17]. Also the task

of finding not just the shortest or fastest route but the top k routes has achieved
quite some interest and has been studied for several years e.g. in [16].

The closest scenario to the cost-gain networks discussed in this paper are
multi-attribute or multi-cost networks that associate multiple types of cost to
traversing a single edge, e.g. length and average speed. In [12], the authors in-
troduce preference queries in such multi-cost networks. In particular, the paper
proposes ranking and skyline queries to compute and sort a result set of possible
target destinations in a multi-cost transport network. This work is different from
the work presented in this paper because the query result consists of possible
destination locations. Another related work is presented in [13]. In this work,
the authors also work on a multi-cost or multi-attribute network and compute
a skyline operator on the paths leading from a given starting point to a des-
tination. The query result consists of all paths from the starting node to the
destination node having a pareto optimal cost vector. The important difference
to the queries in this paper consists in the use of gain attributes. Using gain has
a major impact on the characteristics of the solutions. In cost and multi-cost
networks optimal solutions always consist of shortest paths w.r.t. some possibly
combined cost function. In a cost-gain network, the impact of traversing an edge
needs to be measured w.r.t. the provided gain as well. Thus, optimal solutions
do not need to be paths but can be ways. For example, the skyline operator
proposed in [13] cannot generate interesting round trips because leaving an edge
cannot decrease any cost value compared to the trivial solution of simply staying
a the starting node. Thus, the trivial solution would always dominate any other
way leading away from the starting node.

To the best of our knowledge, there exists no other work that formulates the
search for optimal round trips while employing a cost-gain network. In theoretical
computer science, there exist methods for finding all cycles present in a graph
that will contain the most interesting round trips or parts of it. For example,
[10] deals with the task of finding a complete cycle base in a graph. However,
finding a complete cycle base is a different task and does not consider cost and
gain values for the different edges.

3 Cost-Gain Networks, Round Trips and Queries

A network is represented by a graph where the edges have two attributes, cost
and gain. Thus, we call this graph a cost-gain network:

Definition 1 (Cost-Gain Network (CGN)).
A cost-gain network is a graph G(V,E, cost, gain) where V is denoting the set of
vertices and E ⊂ V × V is denoting the set of edges.
cost : E → IR0

+ is called cost function where cost(e) denotes the non-negative
cost for an edge e ∈ E.
gain : E → IR0

+ is called gain function where gain(e) denotes non-negative gain
for an edge e ∈ E.

In our running example, a CGN represents a network of roads, streets, paths,
sidewalks and trails. The nodes correspond to crossings, the edges correspond to

path segments in the graph. The cost of a segment represents a certain combina-
tion of the characteristics of this segment, like the length, the maximum speed,
the time needed to pass the segment, the inclination etc. The gain of a segment
can be defined correspondingly by combining all characteristics that the user
considers as beneficial, e.g. a trail that is not used by cars might be considered
as more attractive for a hiker than a highway segment etc.

Let us also note that the attributes of an edge ei = (ns, nd) need not be the
same as edge ê = (nd, ns) even though both edges describe the exactly same
path just in different directions as the user might for example avoid declines of
a certain degree whilst accepting inclines of some other degree. Also the impact
on travel speed for this edge might be different.

Definition 2 (way). A way w is a sequence of edges ((v1, v2), (v2, v3),. . .,
(vk−1, vk)) where the following condition holds:

∀1 ≤ i < k : ∃e ∈ E : e = (vi, vi+1) (1)

The cost of a way w is defined as follows:

cost(w) =

k−1∑
i=1

cost((vi, vi+1)) (2)

The gain of a way w is defined as follows:

gain(w) =

k−1∑
i=1

gain((vi, vi+1)) (3)

In other words, a way is a sequence of connected edges. A round trip is a
way starting and ending with the same node s.

Definition 3 (round trip). A way
w = ((v1, v2), (v2, v3), . . . , (vk−1, vk)) is called round trip if v1 = vk.

In the above definition of a round trip, there is no consideration of whether
or not a round trip contains one and the same edge more than once. However,
passing the same edge very often does not yield an additional benefit in most
applications. For example, for a hiker looking for the most scenic walk, it might
be necessary to pass the same edge twice, if some edges having a large gain
are placed in a dead end. However, after visiting a spot and returning on the
same path, it would not make any sense to go there again. Thus, a possibility to
control the redundancy is to limit the number of times an edge can be contained
in the round trip. Furthermore, traversing the same edge more than once should
not contribute to the gain of the round trip. Thus, we can extend our definition
of round trips to round trips with redundancy control. Formally, this can be
formulated as follows:

Definition 4 (Redundancy Control). Given the
round trip r in the CGN G(V,E, cost, gain), r is called a round trip under re-
dundancy control with level k ∈ IN, if the following condition holds:

∀(va, vb) ∈ r : {(vi, vi+1) ∈ r|(vi = va ∧ vi+1 = vb) ∨ (vi = vb ∧ vi+1 = va)}| ≤ k

For a round trip r under redundancy control, the gain is calculated as follows:

gain(r) =
∑

e∈ES(r)

gain((vi, vi+1)) with ES(r) = {e ∈ r}

After defining both types of round trips, we can now define maximum gain
round trip queries:

Definition 5 (Maximum Gain Round Trip Query).
Given the CGN G(V,E, cost, gain), a starting node s ∈ V and cost threshold
τ ∈ IR+, the result of a maximum gain round trip query (MGRQ) is the set R
of round trips, such that for each element r ∈ R the following constraints hold:
(a) cost(r) ≤ τ
(b) ∀r, r̂ ∈ R : gain(r) < gain(r̂)⇔ cost(r) < cost(r̂)

In other words, the result of a MGRQ contains a round trip providing maxi-
mum gain for each cost level being smaller than τ . Thus, the result set contains
all pareto optimal ways starting and ending at s.

4 Algorithms for MGRQs

In this section, we will examine the problem of searching maximum gain round
trips with cost constraints without controlling the redundancy.

4.1 Pruning Round Trips

The simplest pruning condition for a way w = ((v1,2), . . ., (vk−1,vk)) dur-
ing our search is that the way cannot be extended into a round trip r =
((v1,2), . . . , (vk−1, vk), . . ., (vl, v1)) with cost(r) ≤ τ . Thus, if cost(w) > τ , w can
be pruned because the cost of any extension of w must be larger than cost(w).

Let us note that pruning w.r.t. gain is not that simple. Extending a way
usually increases the gain and thus, there is no upper limit for the gain of a
way. However, since we are only looking for round trips having an optimal cost-
gain ratio, we can use the following observation for defining a further pruning
criterion: For each r ∈ R, we can guarantee that there is no other round trip
generating more gain and having at most the same cost. Therefore, each partition
w of the result round trip r has a pareto optimal cost gain ratio w.r.t all other
ways starting and ending at the same position as w. The intuition behind this
conclusion is that each part of the round trip serves three purposes: it moves
the traveler to the end of the way, it generates a certain amount of cost and it
provides a certain amount of gain. Apart from this, the properties of the way do
not influence the properties of the complete round trip. Formally, we can define
the following pruning rule based on the domination relationship:

w ŵ

(a)

ga
in w

ŵ

costcost
(b)

Fig. 1. Local pruning of pareto optimal paths: if ŵ is dominated by w, any
further extension ∆ of w and ŵ does not change the pruning relation so that
ŵ +∆ is still dominated by w +∆.

Lemma 1 (local pruning by domination). Let w = ((v1, v2), . . . , (vk−1, vk))
be a way in G(E, V, cost, gain), then w is dominated by another way ŵ =
((v1, v̂2),. . ., (ˆvk−1, vk)) if either cost(w) > cost(ŵ) ∧ gain(w) ≤ gain(ŵ) or
cost(w) ≥ cost(ŵ)∧ gain(w) < gain(ŵ). If w is dominated by ŵ, then w cannot
be extended into an element of the result set of an MGRQ for v1.

Proof. Consider the result round trip r with gain(r) and cost(r). Due to the
definition of the result set, we can rule out that there is another round trip r̂
having at most the same cost and more gain or at least the same gain and less
cost. Now, consider a way w = (v1, v2, . . . , vi) being part of r. If there exists
another way ŵ = (v1, v̂2, . . . , vi) in r leading from v1 to vi with cost(ŵ) <
cost(w)∧ gain(ŵ) ≥ gain(w) or cost(ŵ) ≤ cost(w)∧ gain(ŵ) ≥ gain(w), then
it is possible to construct a round trip rnew by replacing w by ŵ in r. However,
in this case r̂ would dominate r which contradicts the condition that r is part of
the result set.

An illustration of this pruning mechanism can be found in figure 1.

4.2 A Basic MGEQ Algorithm

In our descriptions, we will denote the edges starting at node v as outlinks of v
while the edges ending at v are called inlinks. Our algorithm employs two data
structures. The first is a hash table called node tab containing an entry for each
visited node vi. Furthermore, the node tab stores all undominated ways starting
at s and ending at vi. For each of these ways, we store a flag indicating whether
we already processed the way in a previous step or not. In the following, we will
use the expression ”update the node tab with way w” for the following steps
being used in our algorithm:

1. Check whether w is dominated by any entry of the node tab.

2. If w is not dominated, insert w into the node tab entry.

3. Remove all entries from the node tab which are dominated by w.

Our second data structure is a priority queue containing all nodes. Each node vi
is prioritized by the maximum gain among all ways ending at vi and the queue
is organized in descending order.

SimpleMGRQ(Node s, Float τ)
(1) Nodetab tab = InitNotetab()
(2) PriorityQueue queue = InitQueue()
(3) FOR EACH Link l IN s.outlinks() DO
(4) Way w = new Way(s, l) (5) tab.update(w)
(6) queue.update(w.last, w.gain)
(7) END FOR
(8) WHILE NOT queue.isEmpty() DO
(9) Entry entry = queue.pop()
(10) List<Way> aktList = entry.getUndominated()
(11) aklist = removeProcessedWays(aktlist)
(12) setProcessed(aktlist)
(13) List<Way> candidates = extendWays(aktList)
(14) FOR EACH w IN candidates DO
(15) IF w.cost < τ DO
(16) tab.update(w)
(17) queue.update(w.last, w.gain)
(18) END IF
(19) END FOR
(20) END WHILE
(21) RETURN tab.getEntry(s)

Fig. 2. Pseudocode of the simple MGRQ Algorithm

The algorithm starts by generating the ways resulting from following all out
links of the starting node s. Afterwards the ways are used to update the node tab
as well as the queue. Now the algorithm enters the main loop which is repeated
until the priority queue is empty. In each iteration, the algorithm pops the top
node from the queue and retrieves all unprocessed ways from the node tab. Let us
note that we have to keep already processed ways in the node tab for determining
locally dominated ways. However, it is note required to process each way more
than once. Now, each unprocessed way is marked as processed. Afterwards we
extend each way by all of its out links generating a set of candidate ways. The
candidate ways are checked whether their cost exceeds the limit τ . Afterwards
each candidate c = ((s, v1), . . . , (vk, vnew)) is checked against the ways being
stored in the node tab entry of their end node vnew. If c is not dominated by
any other way, it is inserted into the node tab entry. Furthermore, if c dominates
former members of the node tab entry, these members can be pruned due to
their sub optimal cost gain ratio. If the maximum gain of any node tab entry
being modified is increased, the entry has to be updated in the queue. After the
queue is empty, the result of our query can be found in the node tab entry of
the starting node s. Figure 2 displays the algorithm in pseudo code.

Let us note that the above algorithm is capable to find arbitrary pareto
optimal ways having a cost less than τ and ending at any visited node. Thus, it
is not restricted to the search of round trips.

BidirectionalMGRQ(Node s, Float τ)
(1) Nodetab tab = InitNotetab();
(2) PriorityQueue queue = InitQueue()
(3) FOR EACH Link l IN s.outlinks() DO
(4) Way w = new Way(s, l)
(5) tab.updateStart(w)
(6) queue.update(w.last, w.gain)
(7) END FOR
(8) FOR EACH Link l IN s.inlinks() DO
(9) Way w = new Way(s, l)
(10) w = w.reverse()
(11) tab.updateReturn(w)
(12) queue.update(w.first, w.gain)
(13) END FOR
(14) WHILE NOT queue.isEmpty() DO
(15) Entry entry = queue.pop()
(16) List<Way> fwdList = entry.getundominatedStart()
(17) fwdList = removeProcessed(fwdList)
(18) setProcessed(fwdList)
(19) List<Way> bwdList = entry.getundominatedReturn()
(20) bwdList = removeProcessed(bwdList)
(21) setProcessed(bwdList)
(22) FOR EACH w IN fwdList DO
(23) IF w.cost > τ

2 DO
(24) fwdList.delete(w)
(25) END IF
(26) END FOR
(27) List< Ways > fwdCandidates = extendFwdWays(fwdList)
(28) FOR EACH w IN fwdCandidates DO
(29) tab.updateStart(w)
(30) queue.update(w.last(), w.gain)
(31) END FOR
(32) List<Ways> bwdCandidates = extendbwdWays(bwdList)
(33) FOR EACH w IN bwdCandidates DO
(34) IF w.cost < τ

2 DO
(35) tab.updateReturn(w)
(36) queue.update(w.last, w.gain)
(37) END IF
(38) END FOR
(39) END WHILE
(40) LIST< WAY S > result = new List¡ways¿()
(42) FOR EACH entry IN tab DO
(43) FOR EACH startWay IN entry.getundominatedStart() DO
(44) FOR EACH retWay IN entry.getundominatedReturn() DO
(45) Way roundtrip = startWay.extend(retWay)
(46) result.update(roundtrip)
(47) END DO
(48) END DO
(49) END FOR
(50) Return result.entries

Fig. 3. Pseudocode of the bidirectional MGRQ Algorithm

4.3 Bidirectional Round Trip search

A further method to improve the runtime is bidirectional search as employed in
the well-known bidirectional Dijkstra search for shortest paths [14]. For searching
maximum gain round trips, bidirectional search yields an even stronger advan-
tage. The algorithm described above generates ways having a cost of at most τ .
Thus, it has to visit any node that is reachable by spending the cost limit τ . How-
ever, a round trip has to end at its starting node. Obviously, examining a way w
having a network distance of τ cannot have a return path w2 to the starting node
that would not exceed τ . Thus, it is only necessary to explore ways w1 for which
there exists a return path w2 having at most a cost of cost(w2) = τ − cost(w1).

To conclude, it is only necessary to extend each way w until cost(w) exceeds
τ
2 . In particular, we can distinguish two cases, when trying to split w into two
partitions of equal cost. In the first case, there is a node after the distance of
exactly τ

2 . In the second case, the split point having exactly the cost of τ
2 is

located at the edge e = (vi, vi+1). Then, there is a unique partitioning of w into
three parts w1,e and w2 and by extending w1 by e, we will get a unique parti-
tioning of w into starting way w1 and return way w2. Based on this observation,
we can stop extending ways that exceed the cost limit of τ

2 at most by one hop
and thus, approximately work with only half of the search radius.

Though bidirectional search is applicable for searching any maximum gain
way w having cost(w) < τ , it is especially well suited for searching round trips.
Since the area of the graph that has to be explored for finding the starting ways
is the same as the area being explored for finding the return ways, it is possible
to simultaneously search for both parts of a round trip. Thus, the part of the
graph being accessed during query processing is significantly decreased.

Our bidirectional search algorithm employs a node tab storing pareto optimal
ways leading to a visited node v managing two lists of undominated ways. The
first contains all undominated ways wi leading from the starting node s to v
and the second manages all undominated ways starting at v and leading to s.
Updating the node tab is used in an almost identical way as described above.
The only difference to the above use is that we have to distinguish whether w is a
starting way or a return way and update the corresponding list. The processing
order is again managed by a priority queue that is ordered by the maximum gain
being observed in either part of the node tab.

The algorithm proceeds as follows: At initialization, the algorithm considers
all outlinks of the starting node s and generates a first set of starting ways. After
updating the node tab with these ways and inserting the corresponding nodes
into the priority queue, we use all inlinks to s to generate a first set of return
ways and again update the node tab and the priority queue. Now the algorithm
enters the main loop which is iterated until the priority queue is empty. In each
iteration i, the algorithm pops the top node vi from the queue. Afterwards, it
retrieves all unprocessed ways from the list of starting ways leading to vi in the
node tab and checks if these have a cost smaller than τ

2 . If a way w is still smaller
than τ

2 , the algorithm extends w by all outlinks of vi and generates a candidate
set Cw. Each element of c ∈ Cw is now used to update the node tab and the

(a) (b) (c)

ga
in w

ŵ

costcost

(d)

Fig. 4. Figure that indicates the problem of local pruning if an edge cardinality
is constrained. ∆ indicates the cost/gain of pc which is added to the paths pa,pb.
The cost contribution to pa and pb is the same with different gain because pc
and pa share an edge. And thus, its pruning power is lowered as well.

priority queue in case the maximum gain of the node tab entry of the last node
c is increased. Afterwards the algorithm retrieves all unprocessed return ways.
Each of these ways wret is extended by all inlinks to a set of candidate ways Cwret
of ways starting at vi and ending at the origin s. Then each candidate c ∈ Cwret
is checked whether its cost is still less or equal τ

2 . If c passes this test, c is used
to update the node tab and the queue, if the maximum gain of the entry of its
first node is increased. Let us note that it is important to check starting ways
and return ways at different stages of the processing to achieve all ways sufficing
the partitioning described above. After the priority queue is empty, i.e. there is
no unprocessed way left that can be extended any further, we need to join the
pareto optimal starting ways and return ways. The result set is organized in a
list of undominated round trips which is updated by visiting all entries of the
node tab. For each entry representing node v, we examine all combinations of
undominated ways starting at wstart and return ways wret. For each pair of ways
wstart and wret, we first of all determine the cost of the corresponding round
trip by adding cost(wstart) + cost(wret) and the corresponding gain by adding
gain(wstart) + gain(wret). Based on this cost-gain vector, we can now update
the result list of undominated round trips. If the new round trip is undominated,
we join both ways and add the result to the result list. If the new round trip
even dominates formerly pareto optimal round trips, the now dominated round
trips are deleted. After each entry of the node tab is processed, the algorithm
terminates and the result consists of all pareto optimal round trips with a cost
of up to τ . Figure 3 describes the bidirectional search in pseudo code.

5 MGRQs with Redundancy Control

In this section, we will discuss maximum gain round trip queries under the
constraints limiting the amount and the impact of edges which occur more than
once. In particular, we will not allow that a round trip contains the same edge
more than k times. Furthermore, as the cost will sum up over duplicate edges

as well, the gain of ways is calculated over the set of all edges being contained
in the round trip. Since there are no duplicates in a set, each edge can add its
gain only once to the round trip. Please recall that we will consider edge (vi, vj)
as equivalent to (vj , vi) w.r.t. redundancy control.

5.1 Pruning and Redundancy Control

Since computing the cost is the same in both types of round trips, pruning ways
w.r.t. their cost is applicable in the same way as described in Section 5. However,
when trying to exploit the cost-gain ratio to prune ways, both redundancy control
mechanisms have a major impact. When using redundancy control, we cannot
guarantee that all partitions of a pareto optimal round trip r are pareto optimal
in the same ways as described above. Figure 4 illustrates this effect in a simple
example. Even though the way w dominates the way ŵ, w is not part of the
pareto optimal round trip r. However, the dominated way ŵ is part of r and
replacing ŵ by w would lead to a round trip r̂ being dominated by r. In this
example we can observe that the influence of w to the gain of the complete round
trip r is not limited to the cost(w), gain(w) and its end node v. If w is extended
into a round trip, all edges being visited on w will not add any gain and thus,
these edges influence the cost gain ratio of the complete round trip. A similar
observation holds for limiting the cardinality of each edge in a round trip to k.
In this case, a pareto optimal round trip r might contain the dominated way w
because the way ŵ dominating w contains edges that would occur more than k
times when replacing w by ŵ in r. In other words, the corresponding round trip
r̂ containing ŵ would violate the redundancy control.

In order to retain the possibility of local pruning, the domination relation
defined above must be extended by the set of visited edges. Thus, to extend local
pruning to redundancy controlled round trips, we can formulate the following
lemma:

Lemma 2 (dominaton under redundancy control).
Let ŵ = ((v1, v̂2), . . . , (v̂k−1, vk) be a way in G(E, V, cost, gain), then ŵ is called
dominated under redundancy control by another node w = ((v1, v2), . . . , (vk−1, vk))
if the following conditions hold:
(a)(cost(ŵ) > cost(w) ∧ gain(ŵ) ≤ gain(w))
∨(cost(ŵ) ≥ cost(w) ∧ gain(ŵ) < gain(w)

(b)For ES(w) = {e ∈ E|e ∈ w},ES(ŵ) = {e ∈ E|e ∈ ŵ}: ES(w) ⊆ ES(ŵ)

If ŵ is dominated under redundancy control by w, then ŵ cannot be extended
into an element of the result set of an MGRQ for v1.

Proof. The proof for condition (a) is identical to the proof in section 4. It remains
to show that replacing ŵ in a round trip r̂ by w cannot lead to a reduced gain
due to duplicate edges or an invalid round trip. Consider the way wret extending
ŵ to the way r̂. The additional gain being earned by traversing wret in r̂ can be
described as

gain(wret)−
∑

e∈ES(ŵ)∩ES(wret)

gain(e)

n3

n1 n2

3

Fig. 5. This figure depicts a way (n1, n2, n3, n2) that can be pruned if
gain((n2, n3, n2)) = 0. In any case, additional traversals of the cycle (n2, n3, n2))
do not yield any gain. Thus, the way (n1, n2, n3, n2, n3, n2) would be pruned in
any case.

Since gain(e) ≥ 0 and ES(w) ∩ ES(wret) ⊆ ES(ŵ) ∩ ES(wret), gain(r) ≥
gain(r̂). Furthermore, if r̂ does not violate the redundancy parameter k, then r
cannot violate it either because it follows from ES(w) ⊆ ES(ŵ) that w does not
contain any edge e with e 6∈ ŵ. Thus, any violation in r would be encountered in
r̂ as well.

A major issue for the usefulness of this lemma is whether there are enough
ways that can be pruned to justify the additional effort for comparing the edge
sets. In the following, we start off by discussing the worst case scenario and after-
wards point out the cases in which our pruning rule still justifies the overhead.

For values of k ≤ 2 and gain(e) > 0 for each e ∈ E, it is impossible that any
way can be pruned. Since the dominated way ŵ must contain at least the same
edges as w, gain(ŵ) ≥ gain(w). Due to w dominating ŵ, we know gain(w) =
gain(ŵ) and cost(w) < cost(ŵ). Based on this observation, it follows that w
and ŵ must have the same set of edges, i.e. ES(w) = ES(ŵ) because ∀e ∈ E :
gain(e) > 0 and gain(w) = gain(ŵ). Thus, ŵ cannot contain an additional edge
to w. Thus, the only allowed difference between ŵ and w is that ŵ visits some
edges e ∈ ES(w) more than once. For k = 2 the only possibility that w and ŵ
end with the same node is w = ŵ.

Correspondingly, for k > 2 and ∀e ∈ E : gain(e) ≥ 0, there might be ways ŵ
being dominated by w. In figure 5, we illustrate the types of ways being pruned.
On the left side ŵ extends w by a cycle consisting of new edges offering no gain.
The example on the right hand side excludes the way ŵ because it visits a cycle
in w more than once. To subsume, domination under redundancy control prunes
all ways containing cycles which do not provide gain.

A final pruning mechanism we have to consider is the redundancy parameter
k. Since we can prune all ways violating the cardinality threshold k, the number
of ways we have to consider for further extension is usually much smaller than
in the general case without redundancy control. The smaller the value of k is
chosen the stronger is its pruning power.

To conclude, searching for maximum gain round trips under redundancy
control can employ cost-based pruning as in Section 4. Additionally, choosing
a small parameter value k also has the power to prune invalid ways during the
traversal. However, when increasing the value of k, the number of pruned paths is

strongly decreasing. For parameter settings, domination-based pruning justifies
the overhead because it prevents the algorithms from exploring ways which are
revisiting identical parts of the way multiple times.

5.2 Algorithm for MGRQs with Redundancy Control

Both algorithms for answering MGRQs described in section 4 are easily adapt-
able for the case of redundancy controlled round trips. To modify the algorithms,
we first of all have to integrate the redundancy control. Therefore, the gain cal-
culation has to be changed in order to prevent duplicate edges to add any further
gain. Furthermore, each time the algorithm tries to extend a way w by an edge
(vi, vj), we have to check whether (vi, vj) or its complement (vj , vi) is already
contained in w more than k times. This way, all invalid candidates are already
pruned before they are constructed in the first place.

In our case, we want to use domination under redundancy control as described
above. The method for checking domination must be extended by additionally
checking for the subset condition. However, if we employ small values of k and
the majority of edges has a non-zero gain, it often makes sense to abandon
pruning based on domination to avoid the computational overhead. In this case,
the list of ways in the node tab entry for node v contains all valid ways found
so far.

A final difference for the first algorithm described in Section 4 is that the
result set has to be stored in a dedicated list of pareto optimal ways. In the
previous setting, the node tab entry of the starting node s already contains
a pareto optimal list of round trips. However, since the pruning rules under
redundancy control are less restrictive, the remaining dominated round trips
must be removed before returning the result set. Let us note that this difference
has no impact to the bidirectional algorithm because the last step joining starting
ways and return ways has to construct a new pareto optimal result set anyway.
After implementing the named modifications, we can employ both algorithms to
compute MGRQs under redundancy control.

6 Experimental Evaluation

In our evaluation, we use data obtained from OpenStreetMap1. We preprocessed
the data using the converter provided in [8] to remove some of the nodes having
a degree of 2. In our tests, we examined three different areas which are popular
for hiking: Kirchsee (GER), Jasper(AL,CA) and Grand Canyon Village(AZ,US).
For each area, we selected a central starting point2.

1 Data and Map data c© OpenStreetMap (and) contributors, CC-BY-SA
http://www.OpenStreetMap.org

2 Kirchsee: http://www.openstreetmap.org/?node=312519650
Jasper: http://www.openstreetmap.org/?node=915165849
Grand Canyon: http://www.openstreetmap.org/?node=174618876

For all our tests, we chose the Euclidean distance between two nodes as a cost
criterion. To represent the gain, we considered the road type. Thus, we assigned
each edge allowing a maximum speed of less than 30 km/h with the gain of 1
and for the rest of the edges, we assigned a gain of 0.

Processing time. In our first set of experiments, we compare the runtime of the
round trip search with redundancy control (rtSearchwRC) to the search allow-
ing redundancy (rtSearch). Furthermore, we compare the bidirectional search
(bidirectionalRTS) and the bidirectional search with redundancy control (bidi-
rectionalRTSwRC). For rtSearchwRC and bidirectionalRTSwRC the redundancy
parameter k was set to 1.

Figure 6 displays the runtime of all four algorithms with increasing cost
values for all three maps. A first observation is that all algorithms display a
certain cost budget for which the search starts to show a super linear increase in
search time. However, we can observe that for employing bidirectional search the
threshold for which query processing takes less than a minute can be extended
to a reasonably large distance for round trips, large enough to be interesting
(up to 17 km). Furthermore, on all graphs the bidirectional search could extend
the cost limit being processable in less than one minute in comparison to the
unidirectional algorithm for the same query type. A final conclusion that can be
drawn from the results is that queries without redundancy control can be pro-
cessed much faster than those employing redundancy control. This observation
can be explained by the fact that dominance on the cost-gain graph is a much
stronger pruning mechanism than dominance under redundancy control. Later
on, we will present an experiment showing that dominance under redundancy
control is very important for larger values of k.

Search space. Another important factor when searching ingraph data is the
portion of the graph which has to be available in main memory. Thus we exam-
ined the increase of the nodes visited during the search with bidirectionalRTS
and bidirectionalRTSwRC w.r.t. the cost threshold τ . The results for all three
maps and both bidirectional search algortihms is displayed in figure 7. It can
be seen that the portion of the graph visited increases approximately linearly
with the threshold parameter τ . Furthermore, we can observe that bidirection-
alRTS and bidirectionalRTSwRC visit comparable portion of the graph. Let us
note that 7(b) is scaled differently. Since the maximum cost threshold process-
able for bidirectionalRTSwRC is smaller than for bidirectionalRTS, we could not
generate values for all distance thresholds we displayed in figure 7(a). To con-
clude, MGRTQs visit rather small portions of the graph. The high complexity
of MGRTQs is rather caused by the large amount of possible round trips than
by the size of the graph.

Impact of the Redundancy Level k. Another impact factor on the search speed
when using redundancy control is k, which limits the cardinality of an edge.
Figure 8 illustrates the impact of k on the retrieval times of bidirectionalRTSwRC
on the Jasper map with varying k from 1 to 6. At first it can be observed that

40

50

60

n
s rtSearch

Bidirectional

0

10

20

30

40

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00
0

11
00
0

12
00
0

ru
nt
im

e
in

round trip length in m

Bidirectional

rtSearchwRC

Bidirectional wRC

(a) Kirchsee

50

35
40
45

n
s

RTSearch

BidirectionalRTS

20
25
30
35

ti
m
e
in BidirectionalRTS

RTSearchwRC

10
15
20

ru
nt

BidirectionaRTSwRC

0
5

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

round trip length in m

(b) Jasper (AL,CA)

45
50

RTS h

30
35
40
45

e
in
 s RTSearch

BidirectionalRTS

15
20
25
30

ti
m RTSearchwRC

BidirectionaRTSwRC

0
5
10
15

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00
0

11
00
0

12
00
0

round trip length in m

(c) Grand Canyon Village (AZ,US)

Fig. 6. Figures 6(a), 6(c) and 6(b) show the runtime of the proposed algorithms.
For rtSearchwRC and bidirectionalRTSwRC k was set to 1.

setting k=1 displays better runtimes and thus, the distance threshold which can
still be computed ended at 10 km. For values of k ≥ 2, the maximum threshold
which could be reached was around 8 km. An interesting result is that for all
k ≥ 2 the run time was approximately the same. Thus, with the exception of the

700

800

600
es

400

500

d
no

de

300

vi
si
te
d

100

200

J Ki h G d C
0

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Jasper Kirchsee Grand Canyon

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

round trip length in m

(a) BidirectionalRTS

350

400

300

es

200

250

d
no

de

150

vi
si
te
d

50

100

J Ki h G d C

0

00 00 00 00 00 00 00 00 00 00 00

Jasper Kirchsee Grand Canyon

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

round trip length in m

(b) BidirectionalRTSwRC

Fig. 7. Number of nodes visited by BidirectionalRTS (7(a)) and Bidirectional-
RTSwRC (7(b)) for all three maps.

45

50
k=1
k=2

35

40

 s

k=3
k=4

25

30

im
e
in k=5

k=6

15

20

ru
nt
i

5

10

0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

10 20 30 40 50 60 70 80 90 10
0

11
0

round trip length in m

Fig. 8. Runtime of bidirectionalRTSwRC for different values of k

special case k = 1 the value of k does not have a strong influence on the runtime.
The reason for this effect can be found in the pruning rule employing dominance
under redundancy control. We will demonstrate this effect more clearly in the
next experiment.

Domination under Redundancy Control. In Section 5, we proposed domination
under redundancy control to implement an additional pruning rule. We already
explained why the impact of this rule strongly depends on the value of the redun-
dancy parameter k. In the following, we will examine the runtime behaviour of
our search algorithms with dominance pruning (rtSearchwRC) and (bidirection-
alRTSwRC) and search algorithms without the dominance pruning rule sim-
pleRTSwRC and simpleBidirectionalRTSwRC for increasing values of k. The
result is displayed in figure 9. The experiment was executed on the Jasper map
with τ = 1 700m and k varying from 1 to 6. Let us note that the relatively small

1

10

e
in
 s

bidirectionalRTSwRC

rTSearchwRC

simpleBidirectionalRTSw
RC

0.001

0.01

0.1

1 2 3 4 5 6

ru
nt
im

k

Fig. 9. Impact of redundancy control on runtime when executed on the Jasper
map with τ = 1 700m and k varying from 1 to 6.

value for τ was chosen to still be able to compute results with simpleRTSwRC
and simpleBidirectionalRTSwRC for larger values of k.

In case of k = 1, our pruning rule cannot have any impact. Thus, it can
be seen that the algorithms without the additional pruning rule perform better
for values of k = 1. For increasing values of k, we can observe an exponential
increase of the runtime for the basic algorithms simpleRTSwRC and simpleBidi-
rectionalRTSwRC. In contrast, rtSearchwRC and bidirectionalRTSwRC show an
almost constant runtime behaviour for increasing values of k. Thus, employing
dominance pruning under redundancy control is a significant improvement for
larger values of k.

7 Conclusions

In this paper, we examined maximum gain round trip queries (MGRQs) with
cost constraints in cost-gain networks. A cost-gain network is a graph where each
edge is connected to a certain amount of cost and additionally provides a certain
amount of gain. A round trip is a way starting and ending at the same node and
a maximum gain round trip is a round trip providing the maximum gain for a
certain cost. The result set of an MGRQ is a set of round trips containing a
maximum gain round trip for every cost level being less or equal to a cost limit
τ . We propose solutions for two sub problems. The first deals with round trips
where edges might occur multiple times. The second sub problem restricts the
number of times an edge can occur in the solution to a maximum value of k. Our
algorithms are tested on real world map data taken from Open Street Map. For
future work, we plan to examine further pruning mechanisms which are based on
optimistic forward approximations similar to A*-search. Furthermore, we plan

to examine parallel algorithms to extend the cost limit being still computable.
Furthermore, we will develop approximative algorithms for the case that an exact
search requires too much resources.

Acknowledgments

References

1. B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms:
theory and experimental evaluation. In In Proceedings of the 5th ACM-SIAM
Symposium on Discrete Algorithms, 1994.

2. G. B. Dantzig. Linear programming and extensions. In Princeton Univ. Press,
Princeton, NJ, 1962.

3. E. V. Denardo and B. L. Fox. Shortest-route methods: 1. reaching, pruning, and
buckets. In Oper. Res., 1979.

4. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269–271, 1959.

5. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In J. Assoc. Comput. Mach., 1987.

6. G. Gallo and S. Pallottino. Shortest paths algorithms. In Annals of Oper. Res.,
1988.

7. A. V. Goldberg. A simple shortest path algorithm with linear average time. In
Algorithms - ESA 2001, 2001.

8. F. Graf, H.-P. Kriegel, M. Renz, and M. Schubert. PAROS: Pareto optimal route
selection. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD), Indianapolis, IN, 2010.

9. R. Jacob, M. V. Marathe, and K. Nagel. A computational study of routing algo-
rithms for realistic transportation networks. In Networks. Oper. Res., 1962.

10. K. Mehlhorn and D. Michail. Minimum cycle bases: Faster and simpler. ACM
Transactions on Algorithms, 6(1), 2009.

11. U. Meyer. Single-source shortest paths on arbitrary directed graphs in linear aver-
age time. In In Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, 2001.

12. K. Mouratidis, Y. Lin, and M. Yiu. Preference queries in large multi-cost trans-
portation networks. In Proceedings of the 26th International Conference on Data
Engineering (ICDE), Long Beach, CA, pages 533–544, 2010.

13. M. Schubert, M. Renz, and H. P. Kriegel. Route skyline queries: a multi-preference
path planning approach. In Proceedings of the 26th International Conference on
Data Engineering (ICDE), Long Beach, CA, 2010.

14. L. Sint and D. de Champeaux. An improved bidirectional heuristic search algo-
rithm. J. ACM, 24(2):177–191, 1977.

15. M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM (JACM), 46(3):362–394, 1999.

16. J. Y. Yen. Finding the k Shortest Loopless Paths in a Network. Management
Science, 17(11):712–716, 1971.

17. F. B. Zhan and C. E. Noon. Shortest path algorithms: an evaluation using real
road networks. In Transp. Sci., 1998.

	Maximum Gain Round Trips with Cost Constraints
	Franz Graf, Hans-Peter Kriegel, Matthias Schubert

